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Constructing a Ginzburg-Landau map neural network, we analyze its storage capacity with an equilibrium
theory of the self-consistent signal-to-noise analySIESNA); however, the prediction does not consist with
the simulation results just in the parameter region where the characteristic of the non-Lyapunov-function
system gets enhancé¢d. Phys. A32, 4623(1999)]. It is expected that this inconsistency comes from the fact
that the dynamics of retrieval and nonretrieval states governs the phase transition. Alternatively, we investigate
its storage capacity with the help of the Amari-Maginu-Okada theory, a dynamical theory, for the stability
analysis of dynamical states. We consequently found that the theory predicts dynamical states quite well
especially in the region where the SCSNA breaks down, and that the phase diagram coincides quantitatively
well with the simulation results.
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[. INTRODUCTION pensable to use dynamical theories, among which the Amari-
Maginu-Okada theory(AMO, statistical neurodynamics
Neural networks without Lyapunov functions serve as fastheory) [14,15 has been found to be useful especially for the
cinating systems that can exhibit nonrelaxation dynamics irliscrete dynamics of Hopfield-type models. For example, the
relation to the weakly destabilized multistable structure ofrétrieval dynamics with a nonmonotonic transfer function
attractors. Generally, in contrast to the case of Hopfield-typ&16] and the case with sparse cod{ig] have been analyzed
models, oscillator neural networks have long characteristi§uccessfully. The AMO theory can be extended easily to
time scales of retrieval dynamics, because oscillator variNoest-type model$18], and the resulting theory has been

ables move smoothly around in the wide range of continuou§MPloyed for its variantgl9,20. Nevertheless, in spite of its

space. Hence, studying oscillator systems is advantageolfdde applicability, it has not worked yet to reveal the char-

for discovering a variety of nonrelaxation dynamics in long acteristic dynamlcs observed pos_S|ny in the oscillator neural
time scales. networks without Lyapunov functions.

The Noest moddl1] has worked as the standard model of The Ginzburg-Landau(GL) oscillator neural network

oscillator neural _networks in the Iast_decade. The HOpfiEIC{;cnbed by the complex GL equation is one promising ex-
model[2] can be interpreted as a physical system constructeg e of the system without Lyapunov functions. The differ-
with Ising spins, whereas the Noest model corresponds to itgti5| dynamics of this system is obviously beyond the
generalization of having the constituent XfY spins. This description with the Lyapunov functiof21]. To our knowl-
system has a definite Lyapunov function, which guaranteegqge, the numerical simulations of these systems have not
its monotonous relaxation dynamics. Therefore, it is possibl§een extensively carried out yet, and its numerically obtained
to analyze the property of its equilibrium states with the helpphase diagram has not been reported. The system does not
of a static theory so far available, namely, the replica methothave the mathematical form like the Noest model at all, so it
[3] or self-consistent signal-to-noise analyS8CSNA [4].  seems impossible to extend either SCS[R&] or the AMO
These powerful tools have enabled us to derive many intetheory to the analysis.
esting results even for its variant mod¢s-11] that have We have thus previously presented a method to reduce the
these functions or something similar. coupled oscillator system into a coupled map system, and
On the other hand, the theoretical study of oscillator neuhave derived th&L map neural networkrom the GL oscil-
ral networks without Lyapunov functions has not progressedator neural networ23,24. The reduced system has the
greatly yet. Nonexistence of the functions means no guararsame mathematical form to that of the Noest model except
tee of monotonic relaxation dynamics and eventually leads t¢or the presence of a paramet@s, which measures the de-
quite complicated temporal evolutions. Static theories mayyree of nonexistence of Lyapunov functions. This readily
pick up the static properties of dynamical systebg,13. encourages the use of SCSNA. However, because the dy-
However, it cannot describe the nonrelaxation dynamicspamics of a reduced system does not obey the description of
which is a prominent characteristic of such systems. any Lyapunov function as well as the original GL oscillator
In order to deal with these systems properly it is indis-system, SCSNA does not perfectly elucidate the results of
numerical simulation§24,25: UnlessC,=<1, where ours is
quite close to the Noest model, the retrieval-nonretrieval
*Email address: uchiyama@amath.hiroshima-u.ac.jp transition occurs beyond the applicability of equilibrium
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1.0 . . . : . .
w\> W=(1+iCq)W—(1+iC,)|W|?W. (2.1
o8 (a) | T Real parameter€, andC, characterize the dynamical prop-
S S(fStNA — erty of an element: The variable is necessarily attracted to a
06} muation = limit cycle |W| =1 with a frequencyCo— C,. So we call this
E G.=0.5 element a limit-cycle oscillator. Note here that the equation
04t ] has no essential change under a rotational transformation
W—Wexp(0), whereO is a phase shift. That allows for an
“HH“HHI arbitrary choice ofC,. ConnectingN GL oscillators through
0.2 ] N XN random two-body interactions, we get the GL oscilla-
tor neural network21]:
0.0 . . .
0.00 0.02 0.04 0.06 0.08 - ) . ] . .
a WO =(1+iCo)W — (14iC,)|wh2wi)
1.0 T N .
+Z Dj(WR—WD)  (j=1,... N). (2.2
k=1
o8t (b)
Sin?lffg’tm‘ - HereDj,'s are complex cou.plin_g. coefficients, and have ran-
08 L 1 dom values with respect to indicpandk. The above system
€ G=1.2 would work as an oscillator neural network with an appro-
04} ; priate set of coupling®j;, .
We previously proposed a coupled map system effectively
0.2 ”“l“”“””” equivalent to the above system of coupled differential equa-
' tions [23,24. Defining new phase variableg!) through
0o 6 =argw) —C, In|W0|, we can reduce the original system
“0.00 0.02 0.04 0.06 0.08 to the following simple one described by a setNdphases:
o
FIG. 1. The SCSNA for then-a curves of our model with the e'ftri=f(h{) h{)*), (2.3

corresponding numerical simulatiofsy/stem sizé\=2000 and en-

semble number 50)a) C,= 0.5 and(b) 1.2. The symboK> and the N .

error bar stand for the mean value and rangéndf respectively. hy): E ijei o )(j =1,...N), (2.3
For the detail, one should refer to R¢25] and the cases of, k=1

=0.0 and 1.0 therein. The definitions @fandm will be given also

in Sec. Ill of the present paper. f(h,h*)=h|h| 1" C2, (2.30

statistical-mechanical approach, and the prediction of stati . .
theory eventually turns out to be meaningless. For the SC- ere we have use60=92 acg:orgjlng to the rotauonal sym-
SNA results, see, e.g., Figsi@and 6 in Ref[25]. See also metry. The lower suffix t_ |nd_|cates d[screte timest (
Fig. 1. This SCSNA breaking, however, illuminates the ex-zg’l’z_' ), and theupperj a site of oscillators. The state
istence of highly dynamical regions. Then we alternatively® = Of Jth oscillator is updated through a complex tra)msfer
resorted to the AMO theory to improve the prediction in suchfunctionf(,), i.e., the function of a complex local fietf) .
regions. A fundamental aim of this paper is to study that. We define the system such that all the elements update from
The paper is organized as follows: In Sec. II, we brieflyt to t+1 simultaneously. The coupling coefficienlg have
present the GL map neural netwof4,25. The AMO  random static values as well & . An asterisk stands for
theory is expanded in Sec. IlI, particularly for the analysis ofcomplex conjugate. We call this the GL map neural network.
our model. We predict in Sec. IV the dynamical behavior Now we consider how to embepl=aN random phase
with the theory, and compare it with that of the numericalPatterns ¢y, . . . ., into the couplingsJy; or in other
simulations. Finally, we devote Sec. V to relating the resultsvords, how to make the system such that the system state
of AMO to SCSNA, and moreover to discuss the nonrelax-= (6(", ... ,6")) can be attracted to one of the embed-
ation dynamics with intermittent chaos. ded p patterns = (7, ... .¢0V)(u=1,... p), de-
pending on its initial state. Actually, we are able to derive the
Il. MODEL matrix J from D [23,24], but in this paper, we treal as a

- . , , _primarily given matrix by
We will first briefly review the GL oscillator network as it

is the fundamental model for this paper. Each uncoupled GL P

oscillator is represented by a complex varialle and its Jo=— exdi(pd)— M i k=1 N

time evolution is governed by the complex Ginzburg-Landau KN ;Z’l Hi(d =] k=1, ).
equation 2.4
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1.0 r r ' r IIl. DYNAMICAL EQUATIONS OF
MACROSCOPIC QUANTITIES
08 | : The main scope of this paper lies in studying how exten-
sively our system can store many patterns in the limiNof
(a) —oo, We now will give some definitions for the scope. First,
— 08 | ] we define the overlap between a pattern and the current state
E of the system to be
04}
10 o
02 | _ mi=g 2, i) (w=1....p).
(3.
0.0 Be—,——————
1000 1020 1040 1060 1080 1100 Using thesep macroscopic quantities, a retrieval state is
TIME characterized as botim*=m~0O(1) andm/~O(1/Y/N)(v
10 # ), in which the system retrieves theth pattern, and a
' nonretrieval state amt”va(l/\/N)(v: 1,....,p). The dif-
NSNS NN N ference between retrieval and nonretrieval states is just the
0.8t . appearance of a®(1) overlap. We especially call this over-
(b) lap the retrieval quality. Then we expect that, when the load-
06 | ] ing ratea=p/N exceeds an upper limit, the system under-

goes the retrieval-nonretrieval transition, and the retrieval

E quality m; vanishes suddenly. This upper limit is termed the
0.4t " storage capacityr.. The final goal of the paper is to derive

the dynamical equations describing temporal evolution of

02 | ] macroscopic quantities based upon the statistical neurody-

namics theory, and to determine t@g dependence of. .
We need dynamical equations of macroscopic quantities
0.0 to theoretically predict the time series of.. Now we will
1000 1020 1040 1060 1080 1100 give a brief derivation of the equations. Suppose that the
TIME system retrieves a pattepr= 1 with the condition of fixedy

FIG. 2. Time evolutions of overlaps in numerical simulations for &1d C. There is only one overlap Uﬁt—o(l) that corre-
N=1000. The transient processes were removed here. Only fivéponds to the pattern=1, namely,m,=m; . ThusN local
overlaps are drawn for simple illustration: Four repregentl non-  fields are written as
retrieved patterns and the rest a retrieved one. Parametefs)are
a=0.035C,=0.85 in the dark region of Fig.(8) of [25], and(b)
a=0.040C,=1.05 slightly inside the dark region of the same fig-
ure.

NP0 N
hD=em+2z0  (j=1,... N).

Here we have defined§1)=2/’1£1e‘¢g)m{‘. This complex

This form of the coupling is called thgeneralized Hebb rule variable is calculated as the summation of the products of a
[1,22]. In order to keep a simple mathematical perspecive, random factore'® and O(1/\/N) overlaps. We regard it as
is assumed to take random values in the intefvalr, 7). noise in comparison with the first term of the above. The
Then we can statistically neglect the correlations betweemmari-Maginu-Okada theory assumes its Gaussian form
patterns (¢ ¢)(u#v) and between site$pp)(j  N(0,07) at every discrete time If the value ofa is known,
#K). Under the assumption of random phase patterns thi¢ is easy to understand that the time evolution of retrieval
validity of the embedding rule can be clarified with the helpquality obeysm,.;=(e '*f(e'’m,+z,c.c.), 4, which is
of the simple signal-to-noise analy$25]. just the integral form of Eq(3.1). For the detail, see Eq.

It is worth noting that a paramet€, plays a crucial role (3.2 below. Moreover ifoy,; was calculated only fronar,
for the dynamical character of the present system. In case @ndm,, then we could obtain a closed set of the evolutions
C,=0, the system reduces to the Noest model. Such a coiref two macroscopic quantities.
cidence easily suggests the extension of the analytical meth- In order to arrive at the closed formula, we actually have
ods developed for the Noest mod€l{=0) into the present to introduce auxiliary quantities as well as in the case of
case C,#0). Recall thatC, comes from the coefficient of SCSNA formula. ForC,=0, the derivation of AMO equa-
nonlinear term in the complex GL equati@hl). So, chang- tions has already been presented by Aoyagi and Kitano
ing it from zero to a finite value, we can continuously modify [18,19. It is quite easy to extend the formulation to the case
a Lyapunov-function system into a non-Lyapunov-functionof C,#0 along the line of their work. So we omit the de-
one. We can observe such a modification of the dynamicatiiled derivation in this paper. Resultingly, the AMO equa-
behavior in Fig. 2. tions for GL map neural network are given as
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% 0.0508
mt+l:f Dif(metoyd), 3.2 Conventional ~ —
- Gradual-change ——
0.0507 |
1 (= *f
Uia=g] D fmet o), (33 ooss | ()
3
' i 0.0505 |
o= at U+ a > Qt+1,r I1 UK+C‘C')’
7=t+1—n k=1+1
(3.9 0.0504 / .

where oW

0.0503 . . .
1 0 2000 4000 6000 8000
Di=—exp—¢A)d¢, (=&+in. (3.5 TIME

0.91

We have abbreviatef{ h,h*) asf(h) in the above. It should

be emphasized that the right-hand side of Eg4) for noise

variance includes the memory effect from the padime 0.91

steps. We calh the approximation order of statistical neuro-

dynamics; the dynamical nature of the system properly de- __ (b)

termines the appropriate order. We have introduced, in Eq. £ 089

(3.4), a macroscopic quantitQ) as the cross correlation of

il ORI .

outputse *", namely, Q.1 ,=((€' o )*e"grj—_l)j . Using an- a.88 |

other new macroscopic quantity, ,_,=(z"*z1 ), i.e., ' _

the cross correlation of noise®), the definition ofQ is Canyentional = ==

- . . ) Gradual-change —
explicitly written in the following integral form: 0.87 .
0 2000 4000 6000 8000
TIME

Qt+l,T:J JJ DaDbDcf* (m;+ o,(dpa+d;c))

Xf(mT*l_}—UT*l(dOb_l—dlc))' (36)

Here we have putdy=+y1-C,, 1/(ow0,-;) and d;

=C; ,—1/(ow0,—;). By taking the memory terms of the
pastN steps into account, the noise correlation is calculate

as well as the autocorrelatidB.4):

Ct,T—l: aQt,T—l+ U:(UT—lCt—l,T—Z

t—1 t
*
+a E QX,T—l H UK

x=t—n+1 k=x+1
=1

T2
ta Qux I[I u.t-n+3=r=t,n=3),
x=t—n+1 k=x+1

(3.7a
Cir-1=aQ,—1TUfCiop—a(r=t—n+2n=2),

(3.7b

Ci,-1=0 (7=t—n+1n=1). (3.70

We point out that, in comparison with the caSg¢=0, only

two major modifications fo€,+# 0 appear in the last term of
Eq. (3.4) and the third term of Eq(3.7a. Using the above

equations, one can determine all the quantitiestat recur-
sively from the ones att—1, ..., andt—n+1. Equations

FIG. 3. Comparison between gradual-change algorithtack
lines) and conventional onefray) in the case ohi=8 andC,
=0.71. 7y=400 andr, = 1600.(a) Profiles ofa. A continuous pro-
file corresponds with a gradual-change run, and a discontinuous one
with a series of four conventional runs. Note that the time in the
onventional ones must be reset to zero at the start of everytyun.

esponses ofm| to the profiles. We notice the difference of
aSonventonal g 0505 witha 9242 0.0506. The use of long total in-
terval 74+ 7,=2000 makes two nonretrieval solutions around
=4000 and 6000 look like vertical gray lines, respectively.

about the pash steps. Thus we need special formulas to
avoid that. Only two initial values of macroscopic quantities
are necessary to start the AMO calculation, thatnig, (0
<|mg|<1) andoy (0(=0). According to the simple esti-
mation, initial variances, should be set ta/a. So we can
only take the value ofm, arbitrarily. [Initial values Qg (7

=1,...,n) are also necessary; however, because of Egs.
(3.2, (3.6, and (3.79, we can putQq,=mgm, for 7
=1, ... n.] These two bring forth the time series of all the

AMO quantities.

IV. RESULTS
A. Algorithm solving the AMO equations

Throughout this paper, we are interested in the dynamical
stability of retrieval solutions, not the theoretical prediction

(3.7b and(3.79 are useful only when the dynamics is in the of the whole retrieval process. So we just classify the system

early stage near=0, since there is no information &t 0

as in a retrieval state if the initial overldmg|~1 keeps a
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TIME o
FIG. 4. Time series o.frt2 produced by the AMO dynamics. With
fixed parameter€,=1.4 anda=0.04, we have calculated the se-
ries forn=2, 4, 6, 8, 10, and 16. Resulting negativgsignifies the ==~ |
termination of the theoretical calculation at that time.
finite value after the transient dynamics; otherwise, as in a —
nonretrieval state wherfmg|~1 decays tom,=0. In the ~ o4l c.o1s0
AMO theory, it is conventional to reset all the variables to : 2_1 B \\
start a run with newly given parameters. This algorithm 1.62 —
makes sense for the study of the retrieval process; however, 0.2 ¢ 1.66 =—
it may turn inappropriate in case of the system without the
Lyapunov function. We have tentatively observed that our 0.0 . . . . .
system almost always cannot be attracted to the AMO re- 0.00 0.01 0.02 0.03
trieval solutions in spite of their existence. According to pre- o

liminary results, such a tendency has gotten remarkable, es-

pecially for the dynamical retrieval solutions around the . ) :
tions were carried out witm=8 and representative values G.

phase transition poinfSee gray lines in Fig. (8).] Hence, i e . ) L
the conventional algorithm does not necessarily work well tOThe ordinate indicates the time average of the retrieval quality, in

. - . . ._which the transients are removéd) C,=1.0, 1.5, 2.0, 2.5, and 3.0.
study the dynamical st.ablllj[y of the retrieval solutions. ThIS(b) C,=1.50, 1.58, 1.62, and 1.66. These four values are in the
results in the underestimation ef. .

range where the relation drastically changes as showa) irsym-

Here We_ PrOPOS_e an_ alternative: we tr_y to determineoolsD and ¢ stand for the positions of, and & , respectively.
proper transition points with gradually changiagr C,. Let

us explain the algorithm in more detail. First, we prepare gpq ime series o2 for variousn’s under the condition of
retrieval solution by the conventional algorithm. Then, Weg ed o andC. as in Fig. 4. The typical value of? is around
2 - t

switch the algorithm to the glternative: changing a pe_lrameteé_l for the given parameters, provided that the system runs in
gradually (gradual-change intervaty) and then keeping it a retrieval state. For an inappropriatethe variance either

o e e o faa e eninE" # Grows up arger than e ypca Value, o goes 0  negglive
9- Value. The former indicates an undesirable relaxation to a

3(b).] If not destabilized, we repeat this procedure W'thOUtnonretrieval solution despite the existence of a retrieval one,

the reset of variables till the solution turns to bg unstableand the latter the breaking of the AMO calculation. As one
Typically, the changes per the gradual-change interval ar&an see in this figure, a small increase of the degree from

Aa=10"°% and AC,=10%; the relaxation interval 10 ° Lo j
steps, and the gradual-change oné~100° steps. Hereafter é;rgx;jrgaetsi O?IOI necessarily yield the improvement of the ap

we pay our attention only to the existence and stability of th We eventually regari=8 as the smallest meaningful

AMO solution, and we do not touch on the basin of retrieval . : .
: . degree: Fom<8, the phase diagram becomes meaningless
solutions theoretically. . o . .
even in the qualitative comparison. Figuré)sshows the
dependence of time averagéah| on « for several fixed
C,'s. Figure §b) depicts the detailed behavior in the range
First of all we should answer the question of how manyof 1.5<C,=<1.66. Observing the branches for a fixeg,
degrees is necessary for the proper AMO description in the one can easily distinguish between a primary branch, which
GL map neural network; however, we have not had any continuously starts withm|=1 in «—0, and subordinate
priori answer to this question so far. Thus we look for theones. Thus let us redefing, as the transition point at which
answer in the result of a numerical simulation. We observed primary branch changes into a subordinate onpmpe=0

FIG. 5. Retrieval quality vex predicted by AMO. The calcula-

B. Retrieval-nonretrieval transition
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0.1 explained as follows: First, the increased admits the
— AMO n=8 oscillatory-retrieval solutions with longer periods to survive
"4“ in the retrieval region. Such contributions appear near the
== SCSNA e peak ofa’ , but they are destroyed in caserof8 because

of the shortage of the approximation degree. That finally
results in the lower peak af; for n=8. How extensively
does the peak height get enhanced with further increasg of
and how does the increase deform tive 32 sharp peak of
a. (on C,~1.45)? It seems quite difficult to answer these
questions unless we rely on the calculation with extremely
largen, namely, with enormous computation time.

Actually, there exists another difficulty in the calculation:
We have mader? peaks forn=8 and 32 by means of in-
terpolation. Even the gradual-change algorithm cannot pro-
duce smooth boundaries just around these peaks. We at-
0.0 Ce 2.5 tribute the difficulty to the riddled structure of the parameter

region in which retrieval solutions periodically oscillate with
| extremely long periods; hence, we have failed to make the
0.0 |m| 1.0 smoothness. We are not able to prepare enough data to draw
the zigzag boundaries, though possibly fractal ones. So we

FIG. 6. Phase diagram predicted by the statistical neurodynanhave exploited the interpolations.
ics. Solid curves mean the transition points for 8, and dotted
lines forn=32. The SCSNA resu[25] is drawn for comparison. A
gray scale indicates the numerical simulation result of retrieval
qualities. Although we have mentioned “oscillatory-retrieval dy-

namics” above, we have not still investigated it extensively.
and, in addition, definery as the maximum transition point Now let us explore its characteristic. It is quite natural to
at which a subordinate one vanishes ifig=0. The intro-  classify the retrieval solutions into two categori¢s) the
duction of ag will soon be necessary to know whether a fixed-point-type retrieval solution an@) the oscillatory one.
theoretically obtained retrieval region consists of a set ofin order to distinguish between these, we focus on the tem-
primary branches or not. In general, the absolute values qjora| behavior observed in the time Serieﬁ mﬂ We here-

overlaps atag'’s are much smaller than those at's as  after deal only with the time series after transients, if not

shown in Fig. §b). These two points fon=8 are plotted in  mentioned.

Fig. 6 (solid curves. This figure also presents, with a gray  One may define as an oscillatory retrieval the solution that
scale, the ensemble-averaged time averagegfcomputed  hag the finite time average phy| (for the sign of a retrieval

by numerlcgl _S|mulat|ons. It is obvious that AMO shows thestate) and the finite amplitude of fluctuatéth,| (for the sign
better prediction ot than SCSNA; on the other hand, the ¢ o ggcillatory ong but this definition is not practical.

numerically obtained retrieval region does not seeminglga, iy mind that the AMO calculation contains the numeri-

N .
_trace out thef br?un(_jargic : Th'ds mayhrel?)te _to tr;er:act thf"‘t’ Eal integrals of macroscopic quantities. The integrands have
In respect of the simulation data, the basin of the retrieva, ingular points that correspond to a zero local figlgor

solutions is smaller than that of trivially existing nonretrieval example, see spirals in Figs. 7 and 8 of R5]) This

* i 1 ~
:)hnes betk.)l‘)’\tf[.c : Tr}e nto_nretlrleva;sol|tj>t|8né¢mt![h 0) redu%el numerically results in imperfect convergence of the integrals
a G;f:negmlf ;): docorr?s:elevin(t)lnedergtreasg (t);' ale gnlsr?cr:?)nterasznd’ eventually, in a time-dependent artificial noise to the
verag quently Its value. ssential dynamics. So when we observe AMO solutions, it

* : : .
to the case ok , numerical simulations revea| that the re- is sometimes difficult to make a distinction of the intrinsic

gion below a; has negligibly small basins to the tr'v'a”y.oscillation from the artificial “fluctuation.” Therefore, we

existing nonretrieval solutions and that such contradiction is . N . .
employed the following criterion: The oscillatory solutions
not observed at all.

In order to investigaten dependence of the results, we can be_ identified when_its amplitl,!de is g.re"’?ter than 0.01.
calculated the critical points far=32 in the same way. The Accordingly, together _W'th the retrlgyal criterion o i,
result is plotted also in Fig. 6 with dotted curves. One car~ 0-05, the AMO solutions are classified as
easily find that the storage capacity shifts to below the SC
SNA prediction and approaches the simulation result®) as
increases to 32. There is a parameter region where the dotted (| M| max— M| min)/2<0.01,
curve ofn=32 is much lower than the solid af=8 (0.7  Oscillatory retrieval: |m|;»=0.05 and
=C,=1.3). This simply implies the improved approxima-
tion by the increase as well as in case@f=0 [18,19. On (Ml e[ M min)/20.01,
the other hand, the opposite region (£G,=<2.1) can be Nonretrieval: |m|in<<0.05.

C. Oscillatory-retrieval phase

Stationary retrieval: |m|,,,=0.05 and
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1.00 1.00
(a) (b) 092 |
£ £
5
0.75 0.75 g
0 TIME 400 0 TIME 400 § osa}
1.00 1.00 ]
(c) (d) 080 |
H H
0.76 . . . .
0.020 0025 0030 0035 0040 0.045
0.75 0.75 ¢
0 TIME 400 0 TIME 400
. ) . i . 0.92 | (b)
FIG. 7. Bifurcation behavior of a retrieval solution by AMO
with n=8 and C,=1.5: (8 «=0.015, the fixed-point-type re-
trieval; (b) «=0.023, the periodically oscillatory retrievalg) a £ osst
=0.025, the period doubling db); (d) «=0.028, an oscillatory- 5 Nﬁ
retrieval solution with aperiodicity. o 1
E  os84f ~
3 .
Here|m|,=min,_n(|m|), etc. The value 0.01 of the oscil- &
lation criterion seems too large, however, this works well to 08 }  C=150
remove the artificially fluctuated solutions from the intrinsic
oscillations.
0.76 L L
On t_he_ other hand, we have ado_pted the value 0.05 as the 0015 0.020 0.025 0.030
lower limit of (nonaveraged|m,| to judge whether the sys- o

tem keeps a retrieval state. This implies that, ojmg goes ) ) ) ) )
below 0.05, it should be treated as a nonretrieval state and FIG. 8. Loading rate vs extrema in the time series of theoreti-
the calculation should be terminated at that time. It has beef@!ly Producedmy| for n=8, (& C,=1.4, and(b) C,=15. The
commonly reported that AMO successfully predicts thelransient processes are removed from the seffdkthe results in
guantities only when the system has a finite overlap, i.e., thg.'gs‘ 8 9, an_d 10 are made fr_om the_sam(_a set Pf )dAtd_Hopf

. . - ifurcation point corresponds with the first bifurcation point and a
system in a retrieval stafel5-19. So we need not divide . ; ; o i )

. . . B . » ‘o period-doubling one with the second point in these figures. It is
nonr?tr|eval solutions into Staponary type a’?d oscHIatory_ unavoidable that the technical problem of numerical convergence
one. We should regard bOt,h Just as nonretrlevgl tyPe- ,It 'Splurs theoretical curves. The right ends of the cascades imply the
incidentally remarked that, if we did not use this <_:r|ter|on, retrieval-nonretrieval transition points.
we would be bothered by the existence of the “exotic” AMO
solutions in whichjm| alternately grows up to a finite value us of theperiod-doubling route to chads the logistic map
and relaxes to nearly zero. To confirm this statement quantitatively, we made the bifur-

Before discussing the diagram of dynamical phases, weation diagram by plotting the extrema jofy| as shown in
first observed the bifurcation behavior from fixed-point-typeFig. 8. These figures excellently display the period-doubling
retrieval to oscillatory retrieval. The retrieval processes forcascade till the first-order period-doubling poifttse second
different «’s are shown in Fig. 7, where=8 andC,=1.5.  branching points The reason why the curves become
When « is small, a retrieval solution relaxes to the fixed- blurred is explained with the matter of numerical conver-
point type as usudFig. 7(a)]. One may perceive the narrow gence of integrals. Such blurred curves prevent us from de-
oscillation of|m|, but we regard this solution as the fixed- termining accurately the second-order period-doubling
point type because its amplitude is less than 0.01. When  points, which are indispensable for the tentative calculation
increased slightly, this fixed-point-type retrieval solution un-of the Feigenbaum ratig[28]. Accordingly, it seems quite
dergoes aHopf bifurcation and changes to a periodically difficult to estimate the onset points of chaotically-oscillating
oscillatory retrieval ongFig. 7(b)]. With the further increase, retrieval solutions. Using the time-series data for Fig. 8, we
one finds theperiod-doubling bifurcationas in Fig. 7c). analyzed thex dependence of the amplitude and frequency
Whene is increased furthermore, the dynamicgmf| even-  of the oscillatory retrieval solutions. The results are plotted
tually shows an aperiodically oscillatory-retrieval solution asin Figs. 9 and 10, which also suggests a part of its bifurcation
shown in Fig. 7d). Since the system consists of identidhl phenomena.
limit-cycle oscillators, the emergence of aperiodicity is quite  We explored extensively, with the=8 approximation,
nontrivial. Finally, as one can expect in neural network systhe Hopf bifurcation points and period-doubling ones for the
tems, the retrieval solution settles down to a nonretrieval ongarious choices of parameters. The result is summarized in
with a further largew. Fig. 11. In generic retrieval phases, the areas of oscillatory-

It is worth stressing that this bifurcation behavior remindsretrieval regions are created by the Hopf bifurcation line, and
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FIG. 10. Thea dependence of the amplitude and frequency of
the AMO oscillatory-retrieval solutions. A number in the parenthe-
sis above means the value @§. We picked up the maximum and
minimum values of|m,| from each series, and plotted (max
—min)/2 as the amplitude of an oscillatory-retrieval solution. More-
over we defined the characteristic frequencies at which the intensi-
ties are greater than 0.6, i.e., nearly half of the maximum intensity,
and plotted them, too. The contributions from zero frequency are
not taken into account also in this figure. Note that we cannot define
the characteristic frequencies in case of the fixed-point-type re-
trieval solutions and chaotically retrieval ones. Then, it is evident
that the the frequency- curves are shorter than the amplitude-
ones.

theory of SCSNA, governs the retrieval-nonretrieval transi-
tion essentially.

Apart from the qualitative agreement, a theoretically de-
termined phase diagram does not converge to the simulation
result so much, especially in the region of oscillatory re-
trieval. The reason may be due to the finite-size effect to the
simulation results: Near a critical point, an oscillatory-
retrieval solution becomes more sensitive to this effect than a

FIG. 9. The a-dependent characteristic of power spectra ob-

served in oscillatory retrieval solutions. The spectra are analyzed
from a set of the time series @f| in the interval from 0 to 1600.

The intensities at zero frequency are not displayed to emphasize the
detailed overall behavior.

are annihilated by the retrieval-nonretrieval transition line.
Consequently, the complexity of retrieval dynamics gets en-
hanced asr approaches the storage capacity.

V. CONCLUDING REMARKS

We have employed the Amari-Maginu-Okada theory to
investigate thégenerig retrieval regions of the GL map neu-
ral network. Our system has no Lyapunov function. Its re-
trieval and nonretrieval solutions may fluctuate in the course

0.08

0.06 |

Storage Capacity ——-—
Hopf Bifurcation
Period Doubling

\ P2
\ / .
3 004} P1 Nonretrieval
\
S
o2 P See
0.00 . . s
1.0 14 1.8 2.2 2.6

Co

of time, and thus AMO theory is indispensable to describe g 11. Oscillatory-retrieval regions determined by AMO with
the retrieval-nonretrieval transition. Actually, as one can reagh—g_ Fp refers to the region of fixed-point type6,27]; P1 the

off in the comparison between Figs. 6 and 11, the regions Oferiodically-oscillating retrieval ones as in Fig(b} P2 the
the AMO oscillatory-retrieval solutions correspond qualita- oscillatory-retrieval except P1 type, which includes the solutions
tively well to the front of the numerically obtained SCSNA shown in Figs. %) and 7d). The FPP1 boundary and the1-P2
breaking regions. We conclude that dynamical solutionsene consist of the Hopf bifurcation points and the period-doubling

which are definitely beyond the description by the staticpoints, respectively.
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fixed-point-type one, because the dynamical solution has a Finally, let us consider carefully the fact that the
number of instantaneous system states to suffer the effect. wscillatory-retrieval region faces the boundary of the
order to verify that, we should try to make the simulationretrieval-nonretrieval transition line. This means that we are
data for the larger systems in the future. As shown in Fig. 6able to slightly destabilize an oscillatory-retrieval state into a
the increase oh does not monotonically improve the coin- nonretrieval one near the boundary. It is quite fascinating to
cidence, in contrast to the case 66=0 [18,19. So this  study what kind of dynamics the system shows there. As is
discrepancy does not closely relate to the matter of approxiwell known in the case of a system with a few degrees of
mation degree. freedom, a weakly destabilized solution plays an important

We have identified that the Amari-Maginu-Okada theoryrole in the appearance of intermittent ch&28]. So we won-
reveals the existence of chaotic retrieval solutions in ouder if the same situation happens also in the field of neural
model; namely, when we observe a time-dependent statisticaletworks. In other words, there exists the possibility that the
qguantity in a deterministically-driven random system with multistable structure of neural system is connected with in-
many degrees of freedom, the quantity can exhibit a kind ofermittent dynamics. We are studying this scope at present.
chaos in the observation. This implies the generalization of
the collective chaodound in the globally coupled GL map
system[23]. They are open questions to explore the chaotic
property of AMO solutions in detail, and to realize them in  We thank Evan Lavoie for careful reading and a revision
numerical simulations. of the manuscript.
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