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Stability of oscillatory retrieval solutions in the oscillator neural network
without Lyapunov functions
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Constructing a Ginzburg-Landau map neural network, we analyze its storage capacity with an equilibrium
theory of the self-consistent signal-to-noise analysis~SCSNA!; however, the prediction does not consist with
the simulation results just in the parameter region where the characteristic of the non-Lyapunov-function
system gets enhanced@J. Phys. A32, 4623~1999!#. It is expected that this inconsistency comes from the fact
that the dynamics of retrieval and nonretrieval states governs the phase transition. Alternatively, we investigate
its storage capacity with the help of the Amari-Maginu-Okada theory, a dynamical theory, for the stability
analysis of dynamical states. We consequently found that the theory predicts dynamical states quite well
especially in the region where the SCSNA breaks down, and that the phase diagram coincides quantitatively
well with the simulation results.
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I. INTRODUCTION

Neural networks without Lyapunov functions serve as f
cinating systems that can exhibit nonrelaxation dynamic
relation to the weakly destabilized multistable structure
attractors. Generally, in contrast to the case of Hopfield-t
models, oscillator neural networks have long characteri
time scales of retrieval dynamics, because oscillator v
ables move smoothly around in the wide range of continu
space. Hence, studying oscillator systems is advantag
for discovering a variety of nonrelaxation dynamics in lo
time scales.

The Noest model@1# has worked as the standard model
oscillator neural networks in the last decade. The Hopfi
model@2# can be interpreted as a physical system constru
with Ising spins, whereas the Noest model corresponds t
generalization of having the constituent ofXY spins. This
system has a definite Lyapunov function, which guarant
its monotonous relaxation dynamics. Therefore, it is poss
to analyze the property of its equilibrium states with the h
of a static theory so far available, namely, the replica met
@3# or self-consistent signal-to-noise analysis~SCSNA! @4#.
These powerful tools have enabled us to derive many in
esting results even for its variant models@5–11# that have
these functions or something similar.

On the other hand, the theoretical study of oscillator n
ral networks without Lyapunov functions has not progres
greatly yet. Nonexistence of the functions means no gua
tee of monotonic relaxation dynamics and eventually lead
quite complicated temporal evolutions. Static theories m
pick up the static properties of dynamical systems@12,13#.
However, it cannot describe the nonrelaxation dynam
which is a prominent characteristic of such systems.

In order to deal with these systems properly it is ind
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pensable to use dynamical theories, among which the Am
Maginu-Okada theory~AMO, statistical neurodynamics
theory! @14,15# has been found to be useful especially for t
discrete dynamics of Hopfield-type models. For example,
retrieval dynamics with a nonmonotonic transfer functi
@16# and the case with sparse coding@17# have been analyzed
successfully. The AMO theory can be extended easily
Noest-type models@18#, and the resulting theory has bee
employed for its variants@19,20#. Nevertheless, in spite of its
wide applicability, it has not worked yet to reveal the cha
acteristic dynamics observed possibly in the oscillator neu
networks without Lyapunov functions.

The Ginzburg-Landau~GL! oscillator neural network,
namely, a neural network of oscillators each of which is d
scribed by the complex GL equation is one promising e
ample of the system without Lyapunov functions. The diffe
ential dynamics of this system is obviously beyond t
description with the Lyapunov function@21#. To our knowl-
edge, the numerical simulations of these systems have
been extensively carried out yet, and its numerically obtain
phase diagram has not been reported. The system doe
have the mathematical form like the Noest model at all, s
seems impossible to extend either SCSNA@22# or the AMO
theory to the analysis.

We have thus previously presented a method to reduce
coupled oscillator system into a coupled map system,
have derived theGL map neural networkfrom the GL oscil-
lator neural network@23,24#. The reduced system has th
same mathematical form to that of the Noest model exc
for the presence of a parameterC2, which measures the de
gree of nonexistence of Lyapunov functions. This read
encourages the use of SCSNA. However, because the
namics of a reduced system does not obey the descriptio
any Lyapunov function as well as the original GL oscillat
system, SCSNA does not perfectly elucidate the results
numerical simulations@24,25#: UnlessC2&1, where ours is
quite close to the Noest model, the retrieval-nonretrie
transition occurs beyond the applicability of equilibriu
©2002 The American Physical Society12-1
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SATOKI UCHIYAMA AND HIROKAZU FUJISAKA PHYSICAL REVIEW E 65 061912
statistical-mechanical approach, and the prediction of st
theory eventually turns out to be meaningless. For the
SNA results, see, e.g., Figs. 5~a! and 6 in Ref.@25#. See also
Fig. 1. This SCSNA breaking, however, illuminates the e
istence of highly dynamical regions. Then we alternativ
resorted to the AMO theory to improve the prediction in su
regions. A fundamental aim of this paper is to study that

The paper is organized as follows: In Sec. II, we brie
present the GL map neural network@24,25#. The AMO
theory is expanded in Sec. III, particularly for the analysis
our model. We predict in Sec. IV the dynamical behav
with the theory, and compare it with that of the numeric
simulations. Finally, we devote Sec. V to relating the resu
of AMO to SCSNA, and moreover to discuss the nonrela
ation dynamics with intermittent chaos.

II. MODEL

We will first briefly review the GL oscillator network as
is the fundamental model for this paper. Each uncoupled
oscillator is represented by a complex variableW, and its
time evolution is governed by the complex Ginzburg-Land
equation

FIG. 1. The SCSNA for them-a curves of our model with the
corresponding numerical simulations~system sizeN52000 and en-
semble number 50):~a! C250.5 and~b! 1.2. The symbolL and the
error bar stand for the mean value and range ofumu, respectively.
For the detail, one should refer to Ref.@25# and the cases ofC2

50.0 and 1.0 therein. The definitions ofa andm will be given also
in Sec. III of the present paper.
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Ẇ5~11 iC0!W2~11 iC2!uWu2W. ~2.1!

Real parametersC0 andC2 characterize the dynamical prop
erty of an element: The variable is necessarily attracted
limit cycle uWu51 with a frequencyC02C2. So we call this
element a limit-cycle oscillator. Note here that the equat
has no essential change under a rotational transforma
W→W exp(iQ), whereQ is a phase shift. That allows for a
arbitrary choice ofC0. ConnectingN GL oscillators through
N3N random two-body interactions, we get the GL oscill
tor neural network@21#:

Ẇ( j )5~11 iC0!W( j )2~11 iC2!uW( j )u2W( j )

1 (
k51

N

D jk~W(k)2W( j )! ~ j 51, . . . ,N!. ~2.2!

HereD jk’s are complex coupling coefficients, and have ra
dom values with respect to indicesj andk. The above system
would work as an oscillator neural network with an appr
priate set of couplingsD jk .

We previously proposed a coupled map system effectiv
equivalent to the above system of coupled differential eq
tions @23,24#. Defining new phase variablesu ( j ) through
u ( j )[argW( j )2C2 lnuW(j)u, we can reduce the original syste
to the following simple one described by a set ofN phases:

eiu t11
( j )

5 f ~ht
( j ) ,ht

( j )* !, ~2.3a!

ht
( j )5 (

k51

N

Jjkeiu t
(k)

~ j 51, . . . ,N!, ~2.3b!

f ~h,h* !5huhu212 iC2. ~2.3c!

Here we have usedC05C2 according to the rotational sym
metry. The lower suffix t indicates discrete times (t
50,1,2, . . . ), and theupperj a site of oscillators. The stat
u t

( j ) of j th oscillator is updated through a complex trans
function f (,), i.e., the function of a complex local fieldht

( j ) .
We define the system such that all the elements update f
t to t11 simultaneously. The coupling coefficientsJjk have
random static values as well asD jk . An asterisk stands for
complex conjugate. We call this the GL map neural netwo

Now we consider how to embedp5aN random phase
patterns f1, . . . ,fp into the couplingsJjk ; or in other
words, how to make the system such that the system s
ut5 (u t

(1) , . . . ,u t
(N)) can be attracted to one of the embe

ded p patternsfm5 (fm
(1) , . . . ,fm

(N))(m51, . . . ,p), de-
pending on its initial state. Actually, we are able to derive t
matrix J from D @23,24#, but in this paper, we treatJ as a
primarily given matrix by

Jjk5
1

N (
m51

p

exp@ i ~fm
( j )2fm

(k)!# ~ j ,k51, . . . ,N!.

~2.4!
2-2
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STABILITY OF OSCILLATORY RETRIEVAL . . . PHYSICAL REVIEW E 65 061912
This form of the coupling is called thegeneralized Hebb rule
@1,22#. In order to keep a simple mathematical perspectivef
is assumed to take random values in the interval@2p,p).
Then we can statistically neglect the correlations betw
patterns^fm

( j )fn
( j )&(m5” n) and between siteŝfm

( j )fm
(k)&( j

Þk). Under the assumption of random phase patterns,
validity of the embedding rule can be clarified with the he
of the simple signal-to-noise analysis@25#.

It is worth noting that a parameterC2 plays a crucial role
for the dynamical character of the present system. In cas
C250, the system reduces to the Noest model. Such a c
cidence easily suggests the extension of the analytical m
ods developed for the Noest model (C250) into the present
case (C25” 0). Recall thatC2 comes from the coefficient o
nonlinear term in the complex GL equation~2.1!. So, chang-
ing it from zero to a finite value, we can continuously mod
a Lyapunov-function system into a non-Lyapunov-functi
one. We can observe such a modification of the dynam
behavior in Fig. 2.

FIG. 2. Time evolutions of overlaps in numerical simulations
N51000. The transient processes were removed here. Only
overlaps are drawn for simple illustration: Four representp21 non-
retrieved patterns and the rest a retrieved one. Parameters a~a!
a50.035,C250.85 in the dark region of Fig. 5~a! of @25#, and~b!
a50.040,C251.05 slightly inside the dark region of the same fi
ure.
06191
n

e

of
n-
th-

al

III. DYNAMICAL EQUATIONS OF
MACROSCOPIC QUANTITIES

The main scope of this paper lies in studying how exte
sively our system can store many patterns in the limit ofN
→`. We now will give some definitions for the scope. Firs
we define the overlap between a pattern and the current
of the system to be

mt
m5

1

N (
j 51

N

exp@ i ~2fm
( j )1u t

( j )!# ~m51, . . . ,p!.

~3.1!

Using thesep macroscopic quantities, a retrieval state
characterized as bothmt

m[mt;O(1) andmt
n;O(1/AN)(n

Þm), in which the system retrieves themth pattern, and a
nonretrieval state asmt

n;O(1/AN)(n51, . . . ,p). The dif-
ference between retrieval and nonretrieval states is just
appearance of anO(1) overlap. We especially call this ove
lap the retrieval quality. Then we expect that, when the lo
ing ratea[p/N exceeds an upper limit, the system und
goes the retrieval-nonretrieval transition, and the retrie
quality mt vanishes suddenly. This upper limit is termed t
storage capacityac . The final goal of the paper is to deriv
the dynamical equations describing temporal evolution
macroscopic quantities based upon the statistical neuro
namics theory, and to determine theC2 dependence ofac .

We need dynamical equations of macroscopic quanti
to theoretically predict the time series ofmt . Now we will
give a brief derivation of the equations. Suppose that
system retrieves a patternm51 with the condition of fixeda
and C2. There is only one overlap ofmt5O(1) that corre-
sponds to the patternm51, namely,mt5mt

1 . ThusN local
fields are written as

ht
( j )5eif1

( j )
mt1zt

( j ) ~ j 51, . . . ,N!.

Here we have definedzt
( j )5(m5” 1

p eifm
( j )

mt
m . This complex

variable is calculated as the summation of the products
random factoreif and O(1/AN) overlaps. We regard it as
noise in comparison with the first term of the above. T
Amari-Maginu-Okada theory assumes its Gaussian fo
N(0,s t) at every discrete timet. If the value ofs t is known,
it is easy to understand that the time evolution of retrie
quality obeysmt115^e2 if f (eifmt1zt ,c.c.)&z,f , which is
just the integral form of Eq.~3.1!. For the detail, see Eq
~3.2! below. Moreover ifs t11 was calculated only froms t
andmt , then we could obtain a closed set of the evolutio
of two macroscopic quantities.

In order to arrive at the closed formula, we actually ha
to introduce auxiliary quantities as well as in the case
SCSNA formula. ForC250, the derivation of AMO equa-
tions has already been presented by Aoyagi and Kit
@18,19#. It is quite easy to extend the formulation to the ca
of C25” 0 along the line of their work. So we omit the de
tailed derivation in this paper. Resultingly, the AMO equ
tions for GL map neural network are given as

ve
2-3
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mt115E
2`

`

Dz f ~mt1s tz!, ~3.2!

Ut115
1

s t
E

2`

`

Dzz* f ~mt1s tz!, ~3.3!

s t11
2 5a1uUt11u2s t

21aS (
t5t112n

t

Qt11,t )
k5t11

t11

Uk1c.c.D ,

~3.4!

where

Dz[
1

p
exp~2z2!dz, z5j1 ih. ~3.5!

We have abbreviatedf (h,h* ) as f (h) in the above. It should
be emphasized that the right-hand side of Eq.~3.4! for noise
variance includes the memory effect from the pastn time
steps. We calln the approximation order of statistical neur
dynamics; the dynamical nature of the system properly
termines the appropriate order. We have introduced, in
~3.4!, a macroscopic quantityQ as the cross correlation o

outputseiu( j )
, namely,Qt11,t[^(eiu t

( j )
)* eiut21

( j )
& j . Using an-

other new macroscopic quantityCt,t21[^zt
( j )* zt21

( j ) & j , i.e.,
the cross correlation of noisesz( j ), the definition ofQ is
explicitly written in the following integral form:

Qt11,t5E E E
2`

`

DaDbDc f* „mt1s t~d0a1d1c!…

3 f „mt211st21~d0b1d1c!…. ~3.6!

Here we have putd05A12Ct,t21 /(s tst21) and d1

5ACt,t21 /(s tst21). By taking the memory terms of th
pastN steps into account, the noise correlation is calcula
as well as the autocorrelation~3.4!:

Ct,t215aQt,t211Ut* Ut21Ct21,t22

1a (
x5t2n11

t21

Qx,t21 )
k5x11

t

Uk
*

1a (
x5t2n11

t22

Qt,x )
k5x11

t21

Uk~ t2n13<t<t,n>3!,

~3.7a!

Ct,t215aQt,t211Ut* Ct21,t21~t5t2n12,n>2!,
~3.7b!

Ct,t2150 ~t5t2n11,n>1!. ~3.7c!

We point out that, in comparison with the caseC250, only
two major modifications forC25” 0 appear in the last term o
Eq. ~3.4! and the third term of Eq.~3.7a!. Using the above
equations, one can determine all the quantities att11 recur-
sively from the ones att,t21, . . . , andt2n11. Equations
~3.7b! and~3.7c! are useful only when the dynamics is in th
early stage neart50, since there is no information att50
06191
-
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about the pastn steps. Thus we need special formulas
avoid that. Only two initial values of macroscopic quantiti
are necessary to start the AMO calculation, that is,m0 (0
<um0u<1) ands0 (s0>0). According to the simple esti
mation, initial variances0 should be set toAa. So we can
only take the value ofm0 arbitrarily. @Initial valuesQ0,t(t
51, . . . ,n) are also necessary; however, because of E
~3.2!, ~3.6!, and ~3.7c!, we can putQ0,t5m0* mt for t
51, . . . ,n.# These two bring forth the time series of all th
AMO quantities.

IV. RESULTS

A. Algorithm solving the AMO equations

Throughout this paper, we are interested in the dynam
stability of retrieval solutions, not the theoretical predictio
of the whole retrieval process. So we just classify the sys
as in a retrieval state if the initial overlapum0u;1 keeps a

FIG. 3. Comparison between gradual-change algorithm~black
lines! and conventional ones~gray! in the case ofn58 and C2

50.71. tg5400 andt r51600.~a! Profiles ofa. A continuous pro-
file corresponds with a gradual-change run, and a discontinuous
with a series of four conventional runs. Note that the time in
conventional ones must be reset to zero at the start of every run~b!
Responses ofumtu to the profiles. We notice the difference o
ac

conventional50.0505 withac
gradual50.0506. The use of long total in

terval tg1t r52000 makes two nonretrieval solutions aroundt
54000 and 6000 look like vertical gray lines, respectively.
2-4
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STABILITY OF OSCILLATORY RETRIEVAL . . . PHYSICAL REVIEW E 65 061912
finite value after the transient dynamics; otherwise, as i
nonretrieval state whereum0u;1 decays tomt50. In the
AMO theory, it is conventional to reset all the variables
start a run with newly given parameters. This algorith
makes sense for the study of the retrieval process; howe
it may turn inappropriate in case of the system without
Lyapunov function. We have tentatively observed that o
system almost always cannot be attracted to the AMO
trieval solutions in spite of their existence. According to p
liminary results, such a tendency has gotten remarkable
pecially for the dynamical retrieval solutions around t
phase transition point.@See gray lines in Fig. 3~b!.# Hence,
the conventional algorithm does not necessarily work wel
study the dynamical stability of the retrieval solutions. Th
results in the underestimation ofac .

Here we propose an alternative: we try to determ
proper transition points with gradually changinga or C2. Let
us explain the algorithm in more detail. First, we prepar
retrieval solution by the conventional algorithm. Then, w
switch the algorithm to the alternative: changing a param
gradually ~gradual-change intervaltg) and then keeping it
for a while ~relaxation intervalt r), we observe whether a
solution becomes destabilized or not.@See black lines in Fig.
3~b!.# If not destabilized, we repeat this procedure witho
the reset of variables till the solution turns to be unstab
Typically, the changes per the gradual-change interval
Da51026 and DC251025; the relaxation interval 102

steps, and the gradual-change one 102;103 steps. Hereafter
we pay our attention only to the existence and stability of
AMO solution, and we do not touch on the basin of retriev
solutions theoretically.

B. Retrieval-nonretrieval transition

First of all we should answer the question of how ma
degreesn is necessary for the proper AMO description in t
GL map neural network; however, we have not had ana
priori answer to this question so far. Thus we look for t
answer in the result of a numerical simulation. We obser

FIG. 4. Time series ofs t
2 produced by the AMO dynamics. With

fixed parametersC251.4 anda50.04, we have calculated the s
ries forn52, 4, 6, 8, 10, and 16. Resulting negatives t

2 signifies the
termination of the theoretical calculation at that time.
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the time series ofs t
2 for variousn’s under the condition of

fixed a andC2 as in Fig. 4. The typical value ofs t
2 is around

0.1 for the given parameters, provided that the system run
a retrieval state. For an inappropriaten, the variance either
grows up larger than the typical value, or goes to a nega
value. The former indicates an undesirable relaxation t
nonretrieval solution despite the existence of a retrieval o
and the latter the breaking of the AMO calculation. As o
can see in this figure, a small increase of the degree fron
52 does not necessarily yield the improvement of the
proximation.

We eventually regardn58 as the smallest meaningfu
degree: Forn,8, the phase diagram becomes meaningl
even in the qualitative comparison. Figure 5~a! shows the
dependence of time averagedumtu on a for several fixed
C2’s. Figure 5~b! depicts the detailed behavior in the ran
of 1.5<C2<1.66. Observing the branches for a fixedC2,
one can easily distinguish between a primary branch, wh
continuously starts withumu51 in a→0, and subordinate
ones. Thus let us redefineac as the transition point at which
a primary branch changes into a subordinate one orumu50

FIG. 5. Retrieval quality vsa predicted by AMO. The calcula-
tions were carried out withn58 and representative values ofC2.
The ordinate indicates the time average of the retrieval quality
which the transients are removed.~a! C251.0, 1.5, 2.0, 2.5, and 3.0
~b! C251.50, 1.58, 1.62, and 1.66. These four values are in
range where the relation drastically changes as shown in~a!. Sym-
bols h andL stand for the positions ofac andac* , respectively.
2-5
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and, in addition, defineac* as the maximum transition poin
at which a subordinate one vanishes intoumu50. The intro-
duction of ac* will soon be necessary to know whether
theoretically obtained retrieval region consists of a set
primary branches or not. In general, the absolute value
overlaps atac* ’s are much smaller than those atac’s as
shown in Fig. 5~b!. These two points forn58 are plotted in
Fig. 6 ~solid curves!. This figure also presents, with a gra
scale, the ensemble-averaged time average ofumtu computed
by numerical simulations. It is obvious that AMO shows t
better prediction ofac than SCSNA; on the other hand, th
numerically obtained retrieval region does not seemin
trace out the boundaryac* . This may relate to the fact tha
in respect of the simulation data, the basin of the retrie
solutions is smaller than that of trivially existing nonretriev
ones belowac* . The nonretrieval solutions (umtu;0) reduce
the contribution of retrieval ones (umtu.0) on the ensemble
averagedumu and consequently decrease its value. In cont
to the case ofac* , numerical simulations reveal that the r
gion below ac has negligibly small basins to the triviall
existing nonretrieval solutions and that such contradiction
not observed at all.

In order to investigaten dependence of the results, w
calculated the critical points forn532 in the same way. The
result is plotted also in Fig. 6 with dotted curves. One c
easily find that the storage capacity shifts to below the S
SNA prediction and approaches the simulation results, an
increases to 32. There is a parameter region where the d
curve of n532 is much lower than the solid ofn58 (0.7
&C2&1.3). This simply implies the improved approxim
tion by the increase as well as in case ofC250 @18,19#. On
the other hand, the opposite region (1.3&C2&2.1) can be

FIG. 6. Phase diagram predicted by the statistical neurodyn
ics. Solid curves mean the transition points forn58, and dotted
lines forn532. The SCSNA result@25# is drawn for comparison. A
gray scale indicates the numerical simulation result of retrie
qualities.
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explained as follows: First, the increasedn admits the
oscillatory-retrieval solutions with longer periods to survi
in the retrieval region. Such contributions appear near
peak ofac* , but they are destroyed in case ofn58 because
of the shortage of the approximation degree. That fina
results in the lower peak ofac* for n58. How extensively
does the peak height get enhanced with further increasen,
and how does the increase deform then532 sharp peak of
ac ~on C2;1.45)? It seems quite difficult to answer the
questions unless we rely on the calculation with extrem
largen, namely, with enormous computation time.

Actually, there exists another difficulty in the calculatio
We have madeac* peaks forn58 and 32 by means of in
terpolation. Even the gradual-change algorithm cannot p
duce smooth boundaries just around these peaks. We
tribute the difficulty to the riddled structure of the parame
region in which retrieval solutions periodically oscillate wi
extremely long periods; hence, we have failed to make
smoothness. We are not able to prepare enough data to
the zigzag boundaries, though possibly fractal ones. So
have exploited the interpolations.

C. Oscillatory-retrieval phase

Although we have mentioned ‘‘oscillatory-retrieval dy
namics’’ above, we have not still investigated it extensive
Now let us explore its characteristic. It is quite natural
classify the retrieval solutions into two categories:~1! the
fixed-point-type retrieval solution and~2! the oscillatory one.
In order to distinguish between these, we focus on the te
poral behavior observed in the time series ofumtu. We here-
after deal only with the time series after transients, if n
mentioned.

One may define as an oscillatory retrieval the solution t
has the finite time average ofumtu ~for the sign of a retrieval
state! and the finite amplitude of fluctuatedumtu ~for the sign
of an oscillatory one!, but this definition is not practical
Bear in mind that the AMO calculation contains the nume
cal integrals of macroscopic quantities. The integrands h
singular points that correspond to a zero local field.~For
example, see spirals in Figs. 7 and 8 of Ref.@25#.! This
numerically results in imperfect convergence of the integr
and, eventually, in a time-dependent artificial noise to
essential dynamics. So when we observe AMO solutions
is sometimes difficult to make a distinction of the intrins
oscillation from the artificial ‘‘fluctuation.’’ Therefore, we
employed the following criterion: The oscillatory solution
can be identified when its amplitude is greater than 0.
Accordingly, together with the retrieval criterion ofumumin

>0.05, the AMO solutions are classified as

Stationary retrieval: umumin>0.05 and

~ umumax2umumin!/2,0.01,

Oscillatory retrieval: umumin>0.05 and

~ umumax2umumin!/2>0.01,

Nonretrieval: umumin,0.05.

-

l
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Hereumumin[mintPN(umtu), etc. The value 0.01 of the osci
lation criterion seems too large, however, this works well
remove the artificially fluctuated solutions from the intrins
oscillations.

On the other hand, we have adopted the value 0.05 as
lower limit of ~nonaveraged! umtu to judge whether the sys
tem keeps a retrieval state. This implies that, onceumtu goes
below 0.05, it should be treated as a nonretrieval state
the calculation should be terminated at that time. It has b
commonly reported that AMO successfully predicts t
quantities only when the system has a finite overlap, i.e.,
system in a retrieval state@15–19#. So we need not divide
nonretrieval solutions into ‘‘stationary type’’ and ‘‘oscillator
one.’’ We should regard both just as nonretrieval type. It
incidentally remarked that, if we did not use this criterio
we would be bothered by the existence of the ‘‘exotic’’AM
solutions in whichumtu alternately grows up to a finite valu
and relaxes to nearly zero.

Before discussing the diagram of dynamical phases,
first observed the bifurcation behavior from fixed-point-ty
retrieval to oscillatory retrieval. The retrieval processes
different a ’s are shown in Fig. 7, wheren58 andC251.5.
When a is small, a retrieval solution relaxes to the fixe
point type as usual@Fig. 7~a!#. One may perceive the narrow
oscillation of umtu, but we regard this solution as the fixe
point type because its amplitude is less than 0.01. Whena is
increased slightly, this fixed-point-type retrieval solution u
dergoes aHopf bifurcation and changes to a periodicall
oscillatory retrieval one@Fig. 7~b!#. With the further increase
one finds theperiod-doubling bifurcationas in Fig. 7~c!.
Whena is increased furthermore, the dynamics ofumtu even-
tually shows an aperiodically oscillatory-retrieval solution
shown in Fig. 7~d!. Since the system consists of identicalN
limit-cycle oscillators, the emergence of aperiodicity is qu
nontrivial. Finally, as one can expect in neural network s
tems, the retrieval solution settles down to a nonretrieval
with a further largea.

It is worth stressing that this bifurcation behavior remin

FIG. 7. Bifurcation behavior of a retrieval solution by AMO
with n58 and C251.5: ~a! a50.015, the fixed-point-type re
trieval; ~b! a50.023, the periodically oscillatory retrieval;~c! a
50.025, the period doubling of~b!; ~d! a50.028, an oscillatory-
retrieval solution with aperiodicity.
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us of theperiod-doubling route to chaosin the logistic map.
To confirm this statement quantitatively, we made the bif
cation diagram by plotting the extrema ofumtu as shown in
Fig. 8. These figures excellently display the period-doubl
cascade till the first-order period-doubling points~the second
branching points!. The reason why the curves becom
blurred is explained with the matter of numerical conve
gence of integrals. Such blurred curves prevent us from
termining accurately the second-order period-doubl
points, which are indispensable for the tentative calculat
of the Feigenbaum ratio@28#. Accordingly, it seems quite
difficult to estimate the onset points of chaotically-oscillati
retrieval solutions. Using the time-series data for Fig. 8,
analyzed thea dependence of the amplitude and frequen
of the oscillatory retrieval solutions. The results are plott
in Figs. 9 and 10, which also suggests a part of its bifurcat
phenomena.

We explored extensively, with then58 approximation,
the Hopf bifurcation points and period-doubling ones for t
various choices of parameters. The result is summarize
Fig. 11. In generic retrieval phases, the areas of oscillato
retrieval regions are created by the Hopf bifurcation line, a

FIG. 8. Loading rate vs extrema in the time series of theor
cally producedumtu for n58, ~a! C251.4, and~b! C251.5. The
transient processes are removed from the series.~All the results in
Figs. 8, 9, and 10 are made from the same set of data.! A Hopf
bifurcation point corresponds with the first bifurcation point and
period-doubling one with the second point in these figures. I
unavoidable that the technical problem of numerical converge
blurs theoretical curves. The right ends of the cascades imply
retrieval-nonretrieval transition points.
2-7
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are annihilated by the retrieval-nonretrieval transition lin
Consequently, the complexity of retrieval dynamics gets
hanced asa approaches the storage capacity.

V. CONCLUDING REMARKS

We have employed the Amari-Maginu-Okada theory
investigate the~generic! retrieval regions of the GL map neu
ral network. Our system has no Lyapunov function. Its
trieval and nonretrieval solutions may fluctuate in the cou
of time, and thus AMO theory is indispensable to descr
the retrieval-nonretrieval transition. Actually, as one can re
off in the comparison between Figs. 6 and 11, the region
the AMO oscillatory-retrieval solutions correspond quali
tively well to the front of the numerically obtained SCSN
breaking regions. We conclude that dynamical solutio
which are definitely beyond the description by the sta

FIG. 9. Thea-dependent characteristic of power spectra o
served in oscillatory retrieval solutions. The spectra are analy
from a set of the time series ofumtu in the interval from 0 to 1600.
The intensities at zero frequency are not displayed to emphasiz
detailed overall behavior.
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theory of SCSNA, governs the retrieval-nonretrieval tran
tion essentially.

Apart from the qualitative agreement, a theoretically d
termined phase diagram does not converge to the simula
result so much, especially in the region of oscillatory r
trieval. The reason may be due to the finite-size effect to
simulation results: Near a critical point, an oscillator
retrieval solution becomes more sensitive to this effect tha

-
d

the

FIG. 10. Thea dependence of the amplitude and frequency
the AMO oscillatory-retrieval solutions. A number in the parenth
sis above means the value ofC2. We picked up the maximum and
minimum values of umtu from each series, and plotted (ma
2min)/2 as the amplitude of an oscillatory-retrieval solution. Mor
over we defined the characteristic frequencies at which the inte
ties are greater than 0.6, i.e., nearly half of the maximum intens
and plotted them, too. The contributions from zero frequency
not taken into account also in this figure. Note that we cannot de
the characteristic frequencies in case of the fixed-point-type
trieval solutions and chaotically retrieval ones. Then, it is evid
that the the frequency-a curves are shorter than the amplitude-a
ones.

FIG. 11. Oscillatory-retrieval regions determined by AMO wi
n58. FP refers to the region of fixed-point type@26,27#; P1 the
periodically-oscillating retrieval ones as in Fig. 7~b!; P2 the
oscillatory-retrieval except P1 type, which includes the solutio
shown in Figs. 7~c! and 7~d!. The FP-P1 boundary and theP1-P2
one consist of the Hopf bifurcation points and the period-doubl
points, respectively.
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fixed-point-type one, because the dynamical solution ha
number of instantaneous system states to suffer the effec
order to verify that, we should try to make the simulati
data for the larger systems in the future. As shown in Fig
the increase ofn does not monotonically improve the coin
cidence, in contrast to the case ofC250 @18,19#. So this
discrepancy does not closely relate to the matter of appr
mation degree.

We have identified that the Amari-Maginu-Okada theo
reveals the existence of chaotic retrieval solutions in
model; namely, when we observe a time-dependent statis
quantity in a deterministically-driven random system w
many degrees of freedom, the quantity can exhibit a kind
chaos in the observation. This implies the generalization
the collective chaosfound in the globally coupled GL map
system@23#. They are open questions to explore the chao
property of AMO solutions in detail, and to realize them
numerical simulations.
ra
e

v.

c

06191
a
In

,

i-

r
al

f
f

c

Finally, let us consider carefully the fact that th
oscillatory-retrieval region faces the boundary of t
retrieval-nonretrieval transition line. This means that we
able to slightly destabilize an oscillatory-retrieval state into
nonretrieval one near the boundary. It is quite fascinating
study what kind of dynamics the system shows there. A
well known in the case of a system with a few degrees
freedom, a weakly destabilized solution plays an import
role in the appearance of intermittent chaos@28#. So we won-
der if the same situation happens also in the field of neu
networks. In other words, there exists the possibility that
multistable structure of neural system is connected with
termittent dynamics. We are studying this scope at prese
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